Profinite Topological Spaces

نویسنده

  • P. J. MORANDI
چکیده

It is well known [Hoc69, Joy71] that profinite T0-spaces are exactly the spectral spaces. We generalize this result to the category of all topological spaces by showing that the following conditions are equivalent: (1) (X,τ) is a profinite topological space. (2) The T0-reflection of (X,τ) is a profinite T0-space. (3) (X,τ) is a quasi spectral space (in the sense of [BMM08]). (4) (X,τ) admits a stronger Stone topology π such that (X,τ, π) is a bitopological quasi spectral space (see Definition 6.1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous Group Actions on Profinite Spaces

For a profinite group, we construct a model structure on profinite spaces with a continuous action. We construct descent spectral sequences for the homotopy groups of the homotopy fixed point space and for the homology of homotopy orbit space which are strongly convergent for an arbitrary profinite group. Our main example is the Galois action on profinite étale topological types of schemes over...

متن کامل

Counting the Closed Subgroups of Profinite Groups

The sets of closed and closed-normal subgroups of a profinite group carry a natural profinite topology. Through a combination of algebraic and topological methods the size of these subgroup spaces is calculated, and the spaces partially classified up to homeomorphism.

متن کامل

Profinite Homotopy Theory

We construct a model structure on simplicial profinite sets such that the homotopy groups carry a natural profinite structure. This yields a rigid profinite completion functor for spaces and pro-spaces. One motivation is the étale homotopy theory of schemes in which higher profinite étale homotopy groups fit well with the étale fundamental group which is always profinite. We show that the profi...

متن کامل

Profinite Methods in Automata Theory

This survey paper presents the success story of the topological approach to automata theory. It is based on profinite topologies, which are built from finite topogical spaces. The survey includes several concrete applications to automata theory. In mathematics, p-adic analysis is a powerful tool of number theory. The p-adic topology is the emblematic example of a profinite topology, a topology ...

متن کامل

Subgroups of Finite Index in Profinite Groups

One way to view Theorem 1.1 is as a statement that the algebraic structure of a finitely generated profinite group somehow also encodes the topological structure. That is, if one wishes to know the open subgroups of a profinite group G, a topological property, one must only consider the subgroups of G of finite index, an algebraic property. As profinite groups are compact topological spaces, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015